Antioxidant Potential of the Biosynthesized Silver, Gold and Silver-Gold Alloy Nanoparticles using Opuntia ficus-indica extract

Authors

  • E. A. Adebayo Ladoke Akintola University of Technology, Ogbomoso
  • M. A. Oke, Department of Pure and Applied Biology, Ladoke Akintola University P.M.B 4000, Ogbomoso
  • D. A. Aina Department of Microbiology, Babcock University, Ilishan-Remo, Ogun State
  • F. J. Afolabi National Centre for Genetic Resources and Biotechnology, Ibadan, Oyo State, Nigeria
  • J. B. Ibikunle Microbiology and Nanobiotechnology Laboratory, LAUTECH, Ogbomoso, Nigeria
  • M. O. Adetayo Department of Biochemistry School of Basic Medical Sciences, Babcock University, Nigeria

DOI:

https://doi.org/10.53704/fujnas.v10i2.354

Keywords:

Opuntia ficus indica, antioxidant activity, nanoparticles, nitric oxide, total phenolic (TPC), flavonoid content (TFC)

Abstract

Nanobiotechnology has become a resourceful/crucial research area due to their copious applications in industrial, pharmacological and medical fields. In the current study, silver nanoparticles (OFI-AgNPs), gold nanoparticles (OFI -AuNPs) and bimetallic alloy nanoparticles (OFI-Ag-AuNPs) were mediated with Opuntia ficus indica (OFI) extract. Evaluation of antioxidant potential of the biosynthesized nanoparticles was done through total phenolic content (TPC), total flavonoid content (TFC) and Nitric oxide scavenging assay. The nitric oxide scavenging activity, total phenolic and total flavonoid contents of the synthesized nanoparticles increased in a dose dependent manner as compared to the standard. The OFI-AuNPs had highest total phenol of 258.28 µg GAE/g and OFI-extract gave the least value of 216.64 µg GAE/g at concentration of 100 µg/ml. The highest value of total flavonoid content (83.88 µg g-1 QE) was recorded at OFI-AgNPs, while the least value of 21.38 µg g-1 QE obtained in OFI-extract. OFI-Ag-AuNPs showed the highest nitric scavenging power of 50.8%, followed by OFI-AgNPs (42.2%), OFI-AuNPs (40.3%) and the least value of 29.7% were obtained in OFI-extract at concentration of 100 µg/mL. These results indicate Opuntia ficus indica as a suitable biomaterial for the synthesis of the nanoparticles which can be utilized as an antioxidant agent. In conclusion, these fascinating bioactivities exhibited by the synthesized nanoparticles established their usefulness in the production of antioxidants OFI-AgNPs, OFI-AuNPs and OFI-Ag-AuNPs for their biomedical applications

Keywords: Opuntia ficus indica, antioxidant activity, nanoparticles, nitric oxide, total phenolic (TPC), flavonoid content (TFC)

Downloads

Download data is not yet available.

References

Abdel-Aziz, M. S., Shaheen, M. S., El-Nekeety, A. A. & Abdel-Wahhab, M. A. (2014). Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. Journal of Saudi Chemical Society, 18(4), 356-363.

Adebayo, E. A., Oke, M. A., Lateef, A., Oyatokun, A. A., Abisoye, O. D., Adiji, I. P., Fagbenro, D. O., Amusan, T. V., Badmus, J. A., Asafa, T. B., Beukes, L. S., Gueguim Kana, E. B. & Abbas, S. H. (2019 a). Biosynthesis of silver, gold and silver–gold alloy nanoparticles using Persea americana fruit peel aqueous extract for their biomedical properties. Nanotechnology for Environmental Engineering 4, 13.

Adebayo, E. A., Ibikunle, J. B., Oke M. A., Lateef, A., Azeez, M. A., Adeboye, O. O., AyanfeOluwa, A. V., Olowoporoku, T. B., Okunlola, O. C., Ogundele, O. A., Jelili, A. B., Tesleem, B.A., Beukes, L.S., Gueguim-Kana, E.B. & Abbas S.H. (2019 b). Antimicrobial and antioxidant activity of Silver, Gold and Silver-Gold Alloy Nanoparticles phytosynthesized using extract of Opuntia ficus-indica. Review Advanced Material Sciences, 58, 313–326. https://doi.org/10.1515/rams-2019-0039.

Adwas, A.A., Elsayed, A.S.I. & Azab, A.E., (2019). Oxidative stress and antioxidant mechanisms in human body. Journal of Applied Biotechnology & Bioengineering 6 (1), 43?47. https://doi.org/10.15406/jabb.2019.06.00173.

Ahmed, J., Gultekinoglu, M. & Edirsinghe, M. (2020). Bacterial cellulose micro-nano fibres for wound healing applications. Biotechnology Advances 41, 107549.

Albasha, M. O., & Azab, S. A. (2014). Effect of cadmium on the liver and amelioration by aqueous extracts of fenugreek seeds, rosemary, and cinnamon in Guinea pigs: histological and biochemical study. Cell Biology, 2 (2), 7-17.

Al-Ganim, K., Al-Thobaiti, A., Al-Balawi, H.F., Alkahem, A.Z. & Mahboob, S. (2017). Effects of Replacement of Fishmeal with other Alternative Plant Sources in the Feed on Proximate Composition of Muscle, Liver and Ovary in Tilapia (Oreochromis nioloticus). Brazilian Archives of Biology and Technology, 60, e17160376. https://doi.org/10.1590/1678- 4324 2017160376.

Aparicio-Fernández, X., Loza-Cornejo, S., Torres-Bernal, M. G., Velázquez Placencia, N. J. & Arreola Nava, H. J. (2017). “Physico- chemical characteristics of fruits of wild Opuntia varieties from two semi-arid regions of Jalisco, Mexico,” Polibotánica, 43, 219–244. https://doi.org/10.18387/polibotanica.43.10.

Arif, R., Jadoun, S. & Verma, A. (2020). Synthesis of nanomaterials and their applications in textile industry. Frontiers of Textile Materials, 167, 117–133.

Aryal, S., Baniya, M.K., Kunwar, P., Gurung, R. & Koirala, N. (2019). Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants, 8(96), 1–12. https://doi.org/10.3390/plants8040096.

Azab, A. E. & Albasha, M. O. (2018). Hepatoprotective effect of some medicinal plants and herbs against hepatic disorders induced by hepatotoxic agents. Journal of Biotechnology Bioengineering, 2(1), 8-23.

Azab, A. E., Albasha, M. O. & Elsayed, A. S. I. (2017). Prevention of nephropathy by some natural sources of antioxidants. Yangtze Medicine, 1(04), 235.

Azeez, L., Lateef, A. & Adebisi, S.A. (2017). Silver nanoparticles (AgNPs) biosynthesized using pod extract of Cola nitida enhances antioxidant activity and phytochemical composition of Amaranthus caudatus Linn. Applied Nanoscience 7, 59–66.

Bagchi, K. & Puri, S. (1998). Free radicals and antioxidants in health and disease: A review. EMHJ-Eastern Mediterranean Health Journal, 4 (2), 350-360, 1998.

Bakhtiar, S.I., Shahriar, M., Akhter, R. & Bhuiyan, M.A. (2015). In vitro antioxidant activities of the whole plant extract of chrozophora prostrata (dalz.). Annals of Biological Research 6 (4), 19–26.

Becerril, G. A. & Valdivia, C.B.P. (2006). “Physiological alterations caused by drought in prickly pear (Opuntia ficus-indica),” Mexican Plant Technology Magazine, 29(3), 231– 237.

Bhutto, A. A., Kalay, ?., Sherazi, S.T.H. & Culha, M. (2018). Quantitative structure–activity relationship between antioxidant capacity of phenolic compounds and the plasmonic properties of silver nanoparticles. Talanta, 1(189), 174-181. https://doi.org/10.1016/j.talanta.2018.06.080

Burri, S.C., Ekholm, A., Håkansson, Å., Tornberg, E. & Rumpunen, K. (2017). Antioxidant capacity and major phenol compounds of horticultural plant materials not usually used. Journal of Functional Foods, 38, 119-127.

Chandra, S., Khan, S., Avula, B., Lata, H., Yang, M.H., Elsohly, M.A. & Khan, I.A. (2014). Assessment of Total Phenolic and Flavonoid Content, Antioxidant Properties and Yield of Aeroponically and Conventionally Grown Leafy Vegetables and Fruit Crops: A Comparative Study. Evidence-Based Complementary and Alternative Medicine, 2014, 1– 9. https://doi.org/10.1155/2014/253875.

Chandrasekhar, N. & Vinay, S.P., (2017). Yellow colored blooms of Argemone mexicana and Turnera ulmifolia mediated synthesis of silver nanoparticles and study of their antibacterial and antioxidant activity. Applied Nanoscience Springer Berlin Heidelberg, 7, 851–861. https://doi.org/10.1007/s13204-017-0624-5.

Das, C.G.A., Kumar, V.G., Dhas, T.S., Karthick, V., Govindaraju, K. & Joselin, J.M. (2020). Antibacterial activity of silver nanoparticles (biosynthesis): A short review on recent advances. Biocatalysis and Agricultural Biotechnology, 27, 101593. https://doi.org/10.1016/j.bcab.2020.101593.

Das, G., Patra, J.K., Debnath, T., Ansari, A. & Shin, H.S. (2019). Investigation of antioxidant, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus (L.). PloS one, 14(8), e0220950. https://doi.org/10.1371/journal.pone.0220950.

Dzoyem, J. P. & Eloff, J. N. (2015). Anti-inflammatory, anti-cholinesterase and antioxidant activity of leaf extracts of twelve plants used traditionally to alleviate pain and inflammation in South Africa. Journal of Ethnopharmacology, 160, 194–201. https://doi.org/10.1016/j.jep.2014.11.022.

Edewor, T.I., Owa S.O., Oladipupo, S.S. & Oyelakin, R.A. (2015). Determination of the Total Phenolic, Flavonoid Contents; Antioxidant Activity and GC-MS Study of the leaves of the Medicinal Plant Sarcocephalus latifolius. International Journal of Pharmaceutical Sciences Review and Research 13, 82-86.

El-Mostafa, K., El Kharrassi, Y., Badreddine, A., Andreoletti, P., Vamecq, J., El Kebbaj, M., Latruffe, N., Lizard, G., Nasser, B. & Cherkaoui-Malki, M. (2014). Nopal cactus (Opuntia ficus-indica) as a source of bioactive compounds for nutrition, health and disease. Molecules, 19(9), 14879-14901.

Fetouh, F. A. & Azab, A. E. S. (2014). Ameliorating effects of curcumin and propolis against the reproductive toxicity of gentamicin in adult male guinea pigs: Quantitative analysis and morphological study. American Journal of Life Sciences, 2(3), 138-149.

Ganesan, K. & Xu, B. (2018). A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata). Food Science and Human Wellness, 7(1), 11-33.

Ganesan, K. & Baojun Xu. (2017). "Polyphenol-rich dry common beans (Phaseolus vulgaris L.) and their health benefits." International Journal of Molecular Sciences 18.11 (2017), 2331.

González-Stuart, A. E. & Rivera, J.O. (2019). Nutritional and therapeutic applications of prickly pear cacti. In Bioactive food as dietary interventions for diabetes (pp. 349-360). Academic Press.

Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P.L., Wishnok, J. S. & Tannenbaum, S.R. (1982). Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Analytical Biochemistry 126 (1), 131–138. https://doi.org/10.1016/0003-2697(82)90118-x.

Gudikandula, K., Vadapally, P. & Charya, M.S. (2017). Biogenic synthesis of silver nanoparticles from white rot fungi: Their characterization and antibacterial studies. OpenNano, 2, 64-78.

He, Y., Wei, F., Ma, Z., Zhang, H., Yang, Q., Yao, B., Huang, Z., Li, J., Zeng, C. & Zhang, Q. (2017). Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai and their antioxidant, cytotoxicity, and antibacterial activities. RSC advances, 7(63), 39842-39851.

Hegwood. D. A. (1990). Human health discoveries with Opuntia sp. (Prickly pear). Journal of Horticultural Science. 25, 1515-1516.

Hussain, M., Raja, N.I., Iqbal, M. & Aslam, S. (2019). Applications of plant flavonoids in the green synthesis of colloidal silver nanoparticles and impacts on human health. Iranian Journal of Science and Technology, Transactions A: Science, 43(3), 1381-1392.

Iravani, S., Korbekandi, H., Mirmohammadi, S.V. & Zolfaghari, B. (2014). Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in pharmaceutical sciences, 9(6), 385.

Ivanov, I., Vrancheva, R., Marchev, A., Petkova, N., Aneva, I., Denev, P., Georgiev, V. P. & Pavlov, A. (2014). Antioxidant activities and phenolic compounds in Bulgarian Fumaria species. International Journal of Current Microbiology and Applied Sciences, 3(2), 296-306.

Izuegbuna, O., Otunola, G. & Bradley, G. (2019). Chemical composition, antioxidant, anti-inflammatory, and cytotoxic activities of Opuntia stricta cladodes. Plos one, 14(1), https://doi.org/10.1371/journal.pone.0209682.

Jadoun, S., Arif, R., Jangid, N. K. & Meena, R. K. (2020). Green Synthesis of nanoparticles using plant extracts: A review. Environmental Chemistry Letters, 18, 1–20.

John L. A., & Oluwafemi, O.S., (2017). Plant-mediated synthesis of platinum nanoparticles using water hyacinth as an efficient biomatrix source – An eco-friendly development. Materials Letters, 196, 141–144. https://doi.org/10.1016/j.matlet.2017.03.047.

Johnson, P., Krishnan, V., Loganathan, C., Govindhan, K., Raji, V., Sakayanathan, P., Vijayan, S., Sathishkumar, P. & Palvannan, T. (2018). Rapid biosynthesis of Bauhinia variegata flower extract-mediated silver nanoparticles: an effective antioxidant scavenger and ?-amylase inhibitor. Artificial Cells, Nanomedicine, and Biotechnology, 46(7), 1488-1494.

Khan, R. A., Khan, M. R. & Sahreen, S. (2014). Protective effects of Launaea procumbens against oxidative adrenal molecular, hormonal and pathological changes in rats. Journal of Medicinal Plants Research, 8(3), 162-166.

Kim, Y. W. & Byzova, T. V. (2014). Oxidative stress in angiogenesis and vascular disease. Blood, the Journal of the American Society of Hematology, 123(5), 625-631. https://doi.org/10.1182/blood-2013-09-512749.

Knishinsky, R. (2004). Prickly pear cactus medicine: Treatments for diabetes, cholesterol, and the immune system. Inner Traditions/Bear & Co.

Kumar, V. & Roy, B. K. (2018). Population authentication of the traditional medicinal plant Cassia tora L. based on ISSR markers and FTIR analysis. Scientific Reports, 8(1), 1-11.

Kumari, M. M., Jacob, J., & Philip, D. (2015). Green synthesis and applications of Au–Ag bimetallic nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 185-192. https://doi.org/10.1016/j.saa.2014.08.079.

Kurutas, E. B. (2015). The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutrition Journal, 15(1), 1-22.

Lateef, A., Azeez, M.A., Asafa, T.B., Yekeen, T.A., Akinboro, A., Oladipo, I.C., Azeez, L., Ojo, S.A., Gueguim-Kana, E.B. & Beukes, L.S. (2016). Cocoa pod husk extract-mediated biosynthesis of silver nanoparticles: its antimicrobial, antioxidant and larvicidal activities. Journal of Nanostructure in Chemistry 6 (2), 159-169. https://doi.org/10.1007/s40097-016-0191-4.

Lateef, A., Azeez, M.A., Asafa, T.B., Yekeen, T.A., Akinboro, A., Oladipo, I.C, Azeez, L., Ajibade, S.E., Ojo, S.A., Gueguim-Kana, E.B. & Beukes, L.S. (2016). Biogenic synthesis of silver nanoparticles using a pod extract of Cola nitida: Antibacterial and antioxidant activities and application as a paint additive. Journal of Taibah University for Science, 10(4), 551-562.

Livrea, M.A. & Tesoriere, L. (2006). “Health benefits and bioactive components of the fruits from Opuntia ficus-indica L. Mill,” Journal of the Professional Association for Cactus Development, 8(1), 73–90.

Losada-Barreiro, S. & Bravo-Diaz, C. (2017). Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases. European Journal of Medicinal Chemistry, 133, 379-402.

Mabrouki, L., Zougari, B., Bendhifi, M. & Borgi, M.A. (2015). Evaluation of antioxidant capacity, phenol and flavonoid contents of Opuntia streptacantha and Opuntia ficus indica fruits pulp. Nature & Technology, (13), 2.

Mohan, S., Oluwafemi, O.S., George, S.C., Jayachandran, V.P., Lewu, F.B., Songca, S.P., Kalarikkal, N. & Thomas, S. (2014). Completely green synthesis of dextrose reduced silver nanoparticles, its antimicrobial and sensing properties. Carbohydrate Polymers. 106, 469–74. https://doi.org/10.1016/j.carbpol.2014.01.008.

Nath, D. & Banerjee, P. (2013). Green nanotechnology - a new hope for medical biology. Environ. Toxicology and Pharmacology. 36, 997–1014. https://doi.org/10.1016/j.etap.2013.09.002.

Nehete, J., Bhatia, M. & Narkhede, M. (2010). In-vitro evaluation of antioxidant activity and phenolic content of Costus speciosus (Koen) JE Sm. Iranian Journal of Pharmaceutical Research: IJPR, 9(3), 271.

Netala, V.R., Kotakadi, V.S., Bobbu, P., Gaddam, S.A. & Tartte, V. (2016). Endophytic fungal isolate mediated biosynthesis of silver nanoparticles and their free radical scavenging activity and antimicrobial studies. 3 Biotech. Springer Berlin Heidelberg, 6, 1–9. https://doi.org/10.1007/s13205-015-0313-6.

Nimse, S. B. & Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC advances, 5(35), 27986-28006.

Noori, S. (2012). An Overview of Oxidative Stress and Antioxidant Defensive System. 1, 413. https://doi.org/10.4172/scientificreports.413

Ogochukwu, I., Gloria, O. & Graeme, B. (2019). Chemical composition, antioxidant, anti- inflammatory, and cytotoxic activities of Opuntia stricta cladodes. PLoS ONE 14(1), e0209682. https://doi.org/10.1371/journal.pone.0209682.

Oke, M. A., Adebayo, E. A. & Aina D. A. (2021). Nitric Oxide Scavenging Activity, Total Phenolic and Flavonoid Content of Persea americana Fruit Peel Mediated Silver, Gold and Alloy Nanoparticles, Nano Plus: Science and Technology Nanomaterials 2, 86–96. https://doi.org/10.48187/stnanomat.2021.2.006.

Panche, A.N., Diwan, A.D. & Chandra, S.R. (2016). Flavonoids: an overview. Journal of nutritional science, 5, e47, 1-15. https://doi.org/10.1017/jns.2016.41.

Philip, D. (2011). Mangifera indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 78(1), 327-331.

Pokorný, J. (2007). Are natural antioxidants better–and safer–than synthetic antioxidants? European Journal of Lipid Science and Technology, 109(6), 629-642.

Pugazhendhi, A., Prabhu, R., Muruganantham, K., Shanmuganathan, R. & Natarajan, S. (2019). Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. Journal of Photochemistry and Photobiology B: Biology, 190, 86–97.

Raghunandan, D., Bedre, M.D., Basavaraja, S., Sawle, B., Manjunath, S.Y. & Venkataraman, A. (2010). Rapid biosynthesis of irregular shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaticum) solution. Colloids and Surfaces B: Biointerfaces 79 (1), 235–240. https://doi.org/10.1016/j.colsurfb.2010.04.003.

Ramamurthy, C. H., Padma, M., Mareeswaran, R., Suyavaran, A., Kumar, M. S., Premkumar, K. & Thirunavukkarasu, C. (2013). The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties. Colloids and Surfaces B: Biointerfaces, 102, 808-815.

Raveendran, P., Fu, J. & Wallen, S.L. (2006). A simple and “green” method for the synthesis of Au, Ag, and Au–Ag alloy nanoparticles. Green Chemistry, 8(1), 34-38. https://doi.org/10.1039/B512540E.

Reddy, N.J., Nagoor Vali, D., Rani, M. & Rani, S.S. (2014). Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Material. Science and Engineering C 34, 115–122. https://doi.org/10.1016/j.msec.2013.08.039.

Saravanakumar, A., Ganesh, M., Peng, M.M., Aziz, A.S. & Jang, H.T. (2015). Comparative antioxidant and antimycobacterial activities of Opuntia ficus-indica fruit extracts from summer and rainy seasons. Frontiers in Life Science, 8(2), 182-191. https://doi.org/10.1080/21553769.2015.1028655.

Saumya, S. M. & Basha, P. M. (2011). Antioxidant effect of Lagerstroemia speciosa Pers (Banaba) leaf extract in streptozotocin-induced diabetic mice. Indian Journal of Experimental Biology, 49(2), 125-231.

Shahidi, F. (2009). Nutraceuticals and functional foods: whole versus processed foods. Trends in Food Science & Technology, 20(9), 376-387.

Shi, P., Du, W., Wang, Y., Teng, X., Chen, X. & Ye, L. (2019). Total phenolic, flavonoid content, and antioxidant activity of bulbs, leaves, and flowers made from Eleutherine bulbosa (Mill.) Urb. Food science & nutrition, 7(1), 148-154. https://doi.org/10.1002/fsn3.834.

Singh, U. & Jialal, I. (2006). Oxidative stress and atherosclerosis. Pathophysiology, 13(3), 129-142. https://doi.org/10.1016/j.pathophys.

Sivaraman, S.K., Elango, I., Kumar, S. & Santhanam, V. (2009). A green protocol for room temperature synthesis of silver nanoparticles in seconds. Current Science 97 (7), 1055–1059

Srinoi, P., Chen, Y.T., Vittur, V., Marquez, M. & Lee, T. (2018). Bimetallic Nanoparticles: Enhanced Magnetic and Optical Properties for Emerging Biological Applications. Applied Sciences 8, 1106. https://doi.org/10.3390/app8071106.

Sultana, F., Barman, J., Banik, B. & Saikia, M. (2015). A biological approach to synthesis of silver nanoparticles using aqueous leaf extract of Houttuynia cordata Thunb and comparative antioxidant study of plant extract and synthesized nanoparticles. International Journal of Materials and Biomaterials. Applications, 5(2), 10-16.

Uddin, S. N., Ali, M. E. & Yesmin, M. N. (2010). Antioxidant and antibacterial activities of Senna tora Roxb. American Journal of Plant Physiology, 5(2), 117-121.

Unuofin, J.O., Oladipo, A.O., Msagati, T.A., Lebelo, S.L., Meddows-Taylor, S. & More, G.K. (2020). Novel silver-platinum bimetallic nanoalloy synthesized from Vernonia mespilifolia extract: Antioxidant, antimicrobial, and cytotoxic activities. Arabian Journal of Chemistry, 13(8), 6639-6648.

Unuofin, J.O., Oladipo, A.O., Msagati, T.A.M., Lebelo, S.L., Meddows-Taylor, S. & Garland, K.M. (2020) Novel silver-platinum bimetallic nanoalloy synthesized from Vernonia mespilifolia extract: antioxidant, antimicrobial, and cytotoxic activities. Arabian Journal of Chemistry 13 (8), 6639-6648. https://doi.org/10.1016/j.arabjc.2020.06.019.

Unuofin, J.O., Otunola, G.A. & Afolayan, A.J. (2018). Polyphenolic Content, Antioxidant and Antimicrobial Activities of Vernonia mespilifolia Less. Used in Folk Medicine in the Eastern Cape Province, South Africa. J. Evidence-Based Integr. Med. 23, 1–9. https://doi.org/10.1177/2515690X18773990.

Upadhya, V., Pai, S.R. & Hegde, H.V. (2015). Effect of method and time of extraction on total phenolic content in comparison with antioxidant activities in different parts of Achyranthes aspera. Journal of King Saud University-Science 27 (3), 204–208. https://doi:10.1016/j.jksus.2015.04.004.

Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M. & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry and Cell Biology, 39 (1), 44-84.

Verma, A., Arif, R. & Jadoun, S. (2020). Synthesis, Characterization, and Application of Modified Textile Nanomaterials. Synthesis, char- acterization, and application of modified textile nanomaterials. Frontiers of Textile Materials, 167, 167–187.

Wong, V. & Lerner, E. (2015). Nitric oxide inhibition strategies. Future science OA, 1(1).

Xia, B., He, F. & Li, L. (2013). Preparation of bimetallic nanoparticles using a facile green synthesis method and their application. Langmuir, 29(15), 4901-4907. https://doi.org/10.1021/la400355u.

Zhao, X., Zhou, L., Riaz Rajoka, M. S., Yan, L., Jiang, C., Shao, D, Zhu, J., Shi, J., Huang, Q., Yang, H. & Jin, M. (2018). Fungal silver nanoparticles: synthesis, application and challenges. Critical reviews in biotechnology, 38(6), 817-835. https://doi.org/10.1080/07388551.2017.1414141.

Zhou, K. & Yu, L. (2006). Total phenolic contents and antioxidant properties of commonly sconsumed vegetables grown in Colorado. LWT Food Science and Technology 39 (10), 1155–1162. https://doi:10.1016/j.lwt.2005.07.015.

Downloads

Published

2021-10-18

How to Cite

Adebayo, E. A., Oke, . M. A., Aina, . D. A., Afolabi, . F. J., Ibikunle, . J. B., & Adetayo, M. O. (2021). Antioxidant Potential of the Biosynthesized Silver, Gold and Silver-Gold Alloy Nanoparticles using Opuntia ficus-indica extract. Fountain Journal of Natural and Applied Sciences, 10(2). https://doi.org/10.53704/fujnas.v10i2.354